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Abstract

Zipf famously stated that, if natural language lexicons are structured for efficient communica-
tion, the words that are used the most frequently should require the least effort. This observation
explains the famous finding that the most frequent words in a language tend to be short. A related
prediction is that, even within words of the same length, the most frequent word forms should be
the ones that are easiest to produce and understand. Using orthographics as a proxy for phonetics,
we test this hypothesis using corpora of 96 languages from Wikipedia. We find that, across a vari-
ety of languages and language families and controlling for length, the most frequent forms in a
language tend to be more orthographically well-formed and have more orthographic neighbors
than less frequent forms. We interpret this result as evidence that lexicons are structured by lan-
guage usage pressures to facilitate efficient communication.
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1. Introduction

While there is no a priori reason why a dog should be called a dog and a tarantula a
tarantula in English instead of the other way around, there is evidence that word forms
are, at least partially, constrained by their usage. Recent work suggests that pressures
from communicative constraints influence the relationship between word usage and word
form. One prediction based on information theory (Shannon, 1948) is that the most
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frequently used words should be more optimized. Zipf (1935) and others (Manin, 2006;
Piantadosi, Tily, & Gibson, 2011a) suggest that the length distribution of words is opti-
mized from a language user perspective. Yet pressures stemming from language usage
may systematically affect word forms in many other ways. Predictability is one such pres-
sure: People selectively use shorter words (Mahowald, Fedorenko, Piantadosi, & Gibson,
2013)—or omit words altogether—when the context is predictive (Frank & Jaeger, 2008;
Jaeger, 2010; Levy & Jaeger, 2007).

In this work, we examine another factor that affects word forms: their phonological
properties. In particular, we focus on two aspects of the phonological forms of words:
phonotactic probability and phonological neighborhood density.

e Phonotactic probability is a measure of the well-formedness of a string in a given
language. For instance, in English, the word drop is phonotactically quite probable,
dwop 1is less probable but still allowed, and dsop has, essentially, zero probability.

e Phonological neighborhood density of a word w is the number of words that differ
from word w by insertion, deletion, or substitution of a phoneme (Luce, 1986;
Vitevitch & Luce, 1998). For instance, the neighbors of cat include mat and can.

If a lexicon were structured by language usage pressures, how should word frequency
be related to phonotactic probability and neighborhood density? Zipf (1935) claimed that
the Principle of Least Effort predicts that easily articulated sounds should be used more
often in language than more difficult sounds. While Zipf was referring to individual
sounds, there is compelling evidence that phonotactically probable words are easier to
produce in language use. For instance, the inventory of sounds in languages evolves to
enable easy articulation and perception (Lindblom, 1983, 1990, 1992), and the patterns of
sounds observed across languages reflect articulatory constraints (Kawasaki & Ohala,
1980). Therefore, a language whose most frequent words are phonotactically probable
likely requires less production effort than a language organized such that the most fre-
quent strings are phonotactically improbable.

But what about from the listener’s perspective? One line of thinking suggests that what
is good for the speaker is good for the listener. Just as speakers have an easier time produc-
ing frequent sound sequences, listeners are also more adept at perceiving these sound
sequences. Phonotactically probable words are more easily recognized than less probable
words (Vitevitch, 1999). There is also a learning advantage for probable strings: Probable
strings are learned more easily by infants and children (Coady & Aslin, 2004; Storkel,
2004, 2009; Storkel & Hoover, 2010) and infants prefer high-probability sequences of
sounds compared to lower probability sequences (Jusczyk & Luce, 1994; Ngon et al.,
2013). These lines of evidence suggest a functional advantage for phonotactically probable
words not just in production but in comprehension as well. From this, we expect that the
most frequent words are phonotactically more probable than the most infrequent strings.

There are conflicting accounts as to how phonological neighborhood density affects lan-
guage production and comprehension and, therefore, differing predictions about how the
lexicon should be organized in terms of phonological neighborhood density. Because every-
day linguistic communication takes place in adverse conditions (e.g., environmental noise,
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errors of production, and perception), words with many neighbors cause increased process-
ing difficulty since they are typically more confusable with other words. And indeed there
is evidence that having many neighbors can have an inhibitory effect on lexical access in
perception (Luce, 1986; Vitevitch & Luce, 1998), inhibit reading times Magnuson, Dixon,
Tanenhaus, and Aslin (2007), and elicit lexical competition that slows down word learning
in toddlers (Dautriche, Swingley, & Christophe, 2015; Swingley & Aslin, 2007).

But Sadat, Martin, Costa, and Alario (2014) find that phonological neighborhood density
causes longer naming latencies in production and, therefore, has an inhibitory effect. Vite-
vitch and Stamer (2006), like Sadat et al. (2014), argue that morphologically rich languages
like Spanish and French typically show an inhibitory effect for words with many neighbors
in naming tasks. Yet it has also been shown that phonological similarity (a) facilitates the
ease with which people produce words (Gahl, Yao, & Johnson, 2012; Stemberger, 2004;
Vitevitch & Sommers, 2003); (b) supports novel word representation in working memory
(Storkel & Lee, 2011), and (c) boosts word learnability in adults (Storkel, Armbruster, &
Hogan, 2006). Whether neighborhood effects are facilitative or inhibitory in production
may be task dependent (Chen & Mirman, 2012). In such a case, it is difficult to predict how
neighborhood density should be distributed with regard to frequency to be optimal for
language usage purposes. Following the prediction of information-theoretic accounts
(Shannon, 1948), the most frequent words tend to be the most optimized for language com-
munication. Therefore, the directionality of the relationship between neighborhood density
and frequency (assuming that it is consistent across many languages) is informative about
how neighborhood density should be optimal for language usage.

To evaluate the extent to which the phonological forms of words may be explained by
word usage, we analyzed the lexicons of 96 typologically diverse languages downloaded
from Wikipedia. For each word form composing these lexicons we calculated its ortho-
graphic probability (a proxy for phonological probability) and its orthographic neighbor-
hood density (a proxy for phonological neighborhood density). We investigated (a) the
relationship between frequency (by token) and orthographic probability (as measured over
word types) and (b) the relationship between frequency and neighborhood density. In all
of these analyses, we compared only words of the same length so that any of resulting
effects are not driven by word length. To assess significance, we used the method
described in Dautriche, Mahowald, Gibson, Christophe, and Piantadosi (2017), whereby
we generate “null” lexicons using an n-phone model trained over unique word forms in
the real lexicon. Thus, for each language, we generate N simulated lexicons with the
same frequency distribution as the real lexicon and ask whether we see the same correla-
tion between the factors above in the simulated lexicons and in the real lexicon.

Given previous experimental results showing an advantage for phonotactically well-
formed word forms, information-theoretic accounts predict that there should be a consis-
tent positive correlation between frequency and orthographic probability across languages.
The experimental results on the influence of neighborhood density in language processing
are not clear and could go either way, yet a consistent positive or negative correlation
between frequency and neighborhood density would be informative about how neighbor-
hood density should be optimal for language usage. However, if we observe no consistent
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correlations between orthographic probability and frequency and between frequency and
neighborhood density, it would suggest either that languages differ in how they have
evolved or that these two variables are not optimized for language usage.

These sorts of correlations have been examined in the literature before, but only for a
small number of languages. Landauer and Streeter (1973) performed a similar analysis
for English, and Frauenfelder, Baayen, and Hellwig (1993) for English and Dutch. All
found that the most frequent words in the language have higher phonotactic probability
and more phonological neighbors than more infrequent words. But it is difficult to draw
conclusions on the functional nature of these correlations based on just a small number of
languages. It is particularly difficult to do so given the large differences that exist across
language families. For instance, there are meaningful differences in the distribution of
word length or in the size of the phoneme inventory that may jointly influence the contri-
bution of neighborhood density and orthographic probability in different languages. Vite-
vitch and Stamer (2006) suggest that differences in morphological complexity between
Spanish and English, for instance, lead to different neighborhood effects.

Therefore, in this work we take a breadth-based approach and examine a large range
of typologically different languages using an orthographic corpus. Crucially, unlike previ-
ous studies of the relationship between word form and frequency, these results include a
very wide range of languages with a correspondingly wide range of morphological com-
plexity and structure. Thus, if the previously attested relationship between phonotactic
probability and frequency is simply a byproduct of, say, shared morphological processes
or shared word formation processes common to the Germanic and Latin languages most
commonly studied in previous research, then we would expect to see different results in
the typologically varied languages that we consider.

2. Method
2.1. Lexicons

We used the lexicons of 96 languages extracted from Wikipedia. The details on these lex-
icons, including the typological details and our corpus cleaning procedure, are explained in
Appendix A. The languages analyzed included 62 Indo-European languages and 34 non-
Indo-European languages. Of the non-Indo-European languages, 12 language families are
represented as well as a creole. The languages analyzed are shown in Tables 1 and 2.

For this analysis, we selected the set of the 20,000 most frequent unique orthographic
word forms (word types) in a given language. From this set, we defined as a lexicon all
words of length three to seven letters for each language (in characters for orthographic
lexicons and in phonemes for phonemic lexicons).

The number of tokens in the original Wikipedia corpus for each language ranged from
118,800 tokens for the language with the smallest Wikipedia corpus to 14.4 billion tokens
for English. The median language contained 7.7 million tokens. After the restrictions
described above (focusing on the top 20,000 most frequent word types and then words of
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Table 1
List of Indo-European languages used, with language families in bold

Albanian: Albanian; Armenian: Armenian; Baltic: Lithuanian, Latvian; Celtic: Breton, Irish, Scottish
Gaelic, Welsh; creole: Haitian; Germanic: Afrikaans, Alemannic, German, English, Luxembourgish, Low
Saxon, Dutch, Scots, West Frisian, Yiddish; Hellenic: Greek; Indo-Aryan: Fiji Hindi, Marathi, Urdu,
Bosnian, Croatian, Punjabi, Serbian; Iranian: Central Kurdish, Persian, Kurdish, Mazandarani, Tajik; Italic:
Latin; North Germanic: Danish, Icelandic, Norwegian (Nynorsk), Norwegian (Bokmal), Swedish;
Romance: Aragonese, Asturian, Catalan, Spanish, French, Galician, Italian, Lombard, Neapolitan, Occitan,
Piedmontese, Portuguese, Romanian, Sicilian, Venetian, Walloon; Slavic: Belarusian, Bulgarian,
Macedonian, Czech, Polish, Russian, Serbo-Croatian, Slovene, Slovak, Ukrainian

Table 2
List of non-Indo-European languages used, with language families in bold

Afro-Asiatic: Arabic, Amharic, Egyptian Arabic, Hebrew; Altaic: Mongolian, Azerbaijani, Bashkir, Chuvash,
Kazakh, Kyrgyz, Turkish, Tatar, Uzbek; Austronesian: Minang, Malagasy, Indonesian, Malay, Sundanese,
Cebuano, Tagalog, Waray-Waray, Buginese, Javanese; Austroasiatic: Vietnamese; Kartvelian: Georgian;
Niger-Congo: Swahili, Yoruba; Quechuan: Quechua; Tai-Kadai: Thai; Uralic: Estonian, Finnish,
Hungarian; Vasonic: Basque

only length three to seven), we were left with between 6,408 word types and 18,240 word
types to analyze.

To assess whether the Wikipedia corpus (which uses orthographic forms and contains
morphologically complex words) is a good proxy for a more controlled corpus that uses
phonemic representations and is restricted to monomorphemic words, we also analyzed
phonemic lexicons derived from CELEX for Dutch, English, and German (Baayen,
Piepenbrock, & Gulikers, 1995) and Lexique for French (New, Pallier, Brysbaert, & Fer-
rand, 2004). The lexicons were restricted to include only monomorphemic lemmas (coded
as “M” in CELEX; L.D., a French native speaker, identified monomorphemes by hand for
French). That is, the lexicons contained neither inflectional affixes (like English plural -s)
nor derivational affixes like the English -ness. In order to focus on the most used parts of
the lexicon, we selected only words whose frequency is greater than 0. (The CELEX
database includes some rare words listed as having 0 frequency, which were not in the
original CELEX sample.) Since we used the surface phonemic form, when several words
shared the same phonemic form (e.g., “bat”), we included this form only once.

All three CELEX dictionaries were transformed to make diphthongs into two-character
strings. In each lexicon, we removed a small set of words containing foreign characters. This
resulted in a lexicon of 5,459 words for Dutch, 6,512 words for English, 4,219 words for Ger-
man, and 6,782 words for French. The resulting lexicons are available at https://osf.io/rvg8d/.

2.2. Variables under consideration

For each word in each language we computed the word’s:

o Word length: for orthographic lexicons, in characters; for phonemic lexicons, in
phones (so that we can compare only words of the same length)
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o Token frequency: for orthographic lexicons: across all the Wikipedia corpus of the
language; for phonemic lexicons: using the frequency in CELEX or Lexique.

e Orthographic or phonotactic probability: for orthographic lexicons, we trained an
n-gram model on characters (n = 3 with a Laplace smoothing of 0.01 and with
Katz back-off in order to account for unseen but possible sound sequences; see
(Dautriche et al., 2017)) on each lexicon and used the resulting model to find the
probability of each word string under the model. Table 3 shows examples of high
and low probability English words under the English language model.

For phonemic lexicons, we proceeded the same way but the n-gram model was
trained on phones rather than characters.

e Orthographic or phonological neighborhood density: for orthographic lexicons, we
calculated the orthographic neighborhood density of words (as a proxy for phono-
logical neighborhood density) and for phonemic lexicon we calculated their phono-
logical neighborhood density. Orthographic/Phonological neighborhood density is
defined for each word as the number of other words in the lexicon that are one edit
(an insertion, deletion, or substitution) away in orthographic/phonological space
(Luce, 1986; Luce & Pisoni, 1998). For instance, “cat” and “bat” are phonological
neighbors, as well as minimal pairs since they have the same number of letters and
differ by 1. “Cat” and “cast” are neighbors but not minimal pairs. We will only
focus on minimal pairs, as opposed to neighbors, in order to avoid confounds from
languages having different distributions of word lengths.

Table 3
Phonotactically likely and unlikely words in English
with their log probabilities

Word Log probability
reed —-3.69
shed —3.75
mention —4.63
comment —4.68
tsar —8.64
iowa —-9.47
kremlin —11.53
tsunami —12.90

3. Results
3.1. Large-scale effects of frequency on 96 languages
3.1.1. Correlational analysis

Figs. 1 and 2 shows correlations for each language and length (from four to six letters)
separately, between (a) orthographic probability and frequency and (b) minimal pairs and
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Fig. 1. Correlation coefficients between (left) orthographic probability and frequency and (right) minimal
pairs and frequency, by language and length, with 95% confidence intervals based on Fisher transforms for
words of length four to six letters for non-Indo-European languages. Dots to the right of the dotted line at 0
show a positive correlation. The numbers along the y-axis are the Pearson correlations. Text and points are
colored by language family. The presence of a star on the right of the graph indicates that the correlation is
significant at p < .01 compared to the distribution of correlations obtained across 1,000 simulated lexicons.

frequency for non-Indo-European languages (Fig. 1) and for Indo-European languages
(Fig. 2). Dots to the right of the dotted line at 0 show a positive correlation. Almost all
languages show a positive correlation.'

To evaluate whether the correlations between frequency and orthographic probability
and between frequency and orthographic neighborhood are driven by language usage
pressures above and beyond what would be expected by chance, we need to compare
these correlations to a baseline. This baseline would reflect what these correlations would
be like in the absence of language usage pressure. We created such a baseline by follow-
ing the procedure used by Dautriche et al. (2017). We selected the orthographic model
that best reproduces the orthographic processes which are at play in each language® and
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Fig. 2. Correlation coefficients between (left) orthographic probability and frequency and (right) minimal
pairs and frequency, by language and length, with 95% confidence intervals based on Fisher transforms for
words of length four to six letters for non-Indo-European languages. Dots to the right of the dotted line at 0
show a positive correlation. The numbers along the y-axis are the Pearson correlations. Text and points are
colored by language family. The presence of a star on the right of the graph indicates that the correlation is
significant at p < .01 compared to the distribution of correlations obtained across 1,000 simulated lexicons.

used that resulting language models to generate words for 1,000 simulated lexicons for
each language. The number of words in each simulated lexicon was matched to the num-
ber of words in each of the real lexicons (20,000 unique strings) and respected the word
length distribution in each language. For each simulated lexicon, we then randomly reas-
signed the frequencies of the words in the real lexicon to the words of the simulated lexi-
con of the same length, in order to preserve the frequency-length distribution observed
across languages. Because our simulated lexicons are generated independently of the
properties we are interested in (correlations between frequencies and neighborhood den-
sity and between frequency and orthographic probability), they can be used as a statistical
baseline with which the real lexicons can be compared. For each simulated lexicon, we
computed Pearson correlations between log frequency and orthographic probability and
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between log frequency and the number of minimal pairs. We computed a z-score using
the mean and standard deviation of the transformed correlation scores estimated from the
1,000 simulated lexicons for each language. The p-value reflects the probability that the
real lexicon correlations could have arisen by chance.’

Analyzing each length separately and focusing on words of three to seven letters, we
found a significant correlation between log frequency and orthographic probability in
most languages (see Table 4). For instance, for the four-letter words, 94 out of 96 lan-
guages showed a positive correlation and 92 of these correlations were significantly posi-
tive at p < .01 when compared to the simulated baseline.

We also found a robust correlation between log frequency and number of minimal
pairs for almost all languages, as shown in Table 5.

Additionally, we unsurprisingly find a robust correlation between orthographic proba-
bility and number of minimal pairs (mean r = 0.47 when we average across the correla-
tions found for each length from 3 to 7; r = 0.44 across the simulated lexicons). This
result follows trivially from the fact that a phonetically probably word like “set” is more

Table 4

Summary of relationship between orthographic probability and frequency, across languages. Separated by
length, (a) the mean correlation across languages for the relationship between orthographic probability and
frequency, (b) the proportion of languages that show a positive correlation between orthographic probability
and frequency, and (c) the proportion of languages for which this relationship is significantly different from
chance at p < .01, chance being the correlation obtained in 1,000 simulated lexicons

Proportion Showing Proportion Showing
Word Length Mean Correlation Positive Correlation Significant Correlation
3 letters 0.27 1 0.88
4 letters 0.24 0.98 0.96
5 letters 0.23 0.99 0.81
6 letters 0.21 1 0.97
7 letters 0.19 1 0.76

Table 5

Summary of relationship between minimal pairs and frequency, across languages. Separated by length, (a)
the mean correlation across languages for the relationship between the number of minimal pairs and fre-
quency, (b) the proportion of languages that show a positive correlation between the number of minimal pairs
and frequency, and (c) the proportion of languages for which this relationship is significantly different from
chance at p < .01, chance being the correlation obtained in 1,000 simulated lexicons

Proportion Showing Proportion Showing
Word Length Mean Correlation Positive Correlation Significant Correlation
3 letters 0.19 1 0.69
4 letters 0.17 0.98 0.88
5 letters 0.18 0.98 0.78
6 letters 0.19 1 0.97

7 letters 0.18 0.99 0.76
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Table 6

Separated by length, the model coefficient from the full model including random inter-
cepts and slopes for language, subfamily, and family for orthographic probability and
number of minimal pairs. Two asterisks means that by a likelihood test, the predictor
significantly improves model fit at p < .01. Three asterisks means p < .001. The coeffi-
cients can be interpreted as the following: For four-letter words, a 1 SD increase in
orthographic probability is predictive of a 0.21 SD increase in frequency, and a 1 SD
increase in number of minimal pairs is predictive of a 0.05 SD increase in frequency

Word Length Orthographic Probability Number of Minimal Pairs
3 letters 0.23%" 0.08*"

4 letters 0.21%" 0.05%*"

5 letters 0.19%=" 0.07*"

6 letters 0.15%%" 0.11%%"

7 letters 0.13%*" 0.11%%"

b

likely to have more minimal pairs in English than the word “quiz” simply because the
letter sequences in ‘“‘set” are more common and so, probabilistically, there are more
opportunities for a word to be orthographically close to “set” than to “quiz.”

It follows that the correlations between frequency and phonological similarity that were
uncovered previously should be (partly) due to both frequency and orthographic probabil-
ity being correlated with phonological similarity. Because languages structure the vocabu-
lary in different ways (in particular because they have different phoneme inventories and
different word length distributions), the contribution of orthographic probability versus
neighborhood density may vary across languages. Thus, the question becomes (a) whether
the correlation between frequency and neighborhood density remains after factoring out
the effect of orthographic probability and (b) whether the correlation between frequency
and orthographic probability remains after factoring out the effect of neighborhood den-
sity. If these two correlations remain consistent across languages, then this would suggest
that these relationships are the product of language usage pressures, while if languages
display different correlations, this would indicate that these are most likely the result of
language-specific properties on vocabulary structure.

In addition, many of the languages in this study are highly related, so we need an anal-
ysis that generalizes across families and languages to make sure that the effect is not just
lineage specific.

3.1.2. Mixed effect analysis

We ran a mixed effect regression predicting (scaled) frequency for each word from
orthographic probability and number of minimal pairs, where both predictors were nor-
malized for each language and length. We used a maximal random effect structure with
random intercepts for each language, language subfamily, and language family and slopes
for orthographic probability and number of minimal pairs for each of those grouping fac-
tors. In effect, this random effect structure allows for the possibility that some languages
or language families show the predicted effect, whereas others do not (see also e.g.,
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Fig. 3. Correlation coefficients between (a) phonotactic probability and frequency and (b) minimal pairs and
frequency, by language and length, with 95% confidence intervals based on Fisher transforms for words of
length four to six letters for Dutch, English, French, and German. Dots to the right of the dotted line at O
show a positive correlation. The numbers along the y-axis are the Pearson correlations. The presence of a star
on the right of the graph indicates that the correlation score is significant at p < .01 compared to the distribu-
tion of correlation scores obtained across 1,000 simulated lexicons.

Atkinson, 2011; Jaeger, Graff, Croft, & Pontillo, 2011; for a similar approach). It allows
us to test whether the effect exists beyond just language-specific trends. Because of the
complex random effect structure and the large number of data points, we fit each length
separately and focused on words of length three through seven.

For four-letter words (a representative length), a 1 SD increase in orthographic proba-
bility was predictive of a 0.21 SD increase in frequency; a 1 SD increase in number of
minimal pairs was predictive of a 0.05 SD increase in frequency. To assess the signifi-
cance of orthographic probability above and beyond the number of minimal pairs, we per-
formed a likelihood ratio test comparing the full model to an identical model without a
fixed effect for orthographic probability (but the same random effect structure). The full
model was significantly better by a chi-squared test for goodness of fit (x*(1) = 30.9,
p < .0001). To assess the significance of the number of minimal pairs above and beyond
the effect of orthographic probability, we compared the full model to an identical model
without a fixed effect for the number of minimal pairs using a likelihood ratio test. Once
again, the full model explained the data significantly better (3*(1) = 10.6, p < .001).
Thus, both the number of minimal pairs and orthographic probability appear to make
independent contributions in explaining word frequency. This effect holds above and
beyond effects of language family or subfamily, which are included in the model as ran-
dom effects. Note that the effect size is larger for orthographic probability than it is for
number of minimal pairs and that a model including a fixed effect of orthographic
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probability but not minimal pairs has a better model fit (AIC = 520,310) than one that
includes minimal pairs but not probability as a fixed effect (AIC = 520,330). We find a
similar pattern of results for all other lengths examined, as summarized in Table 6. Over-
all, these results suggest that both the number of minimal pairs and the orthographic
probability independently predict frequency but that the effect of orthographic probability
is stronger and is likely, in part, driving the neighborhood effect.

3.2 Testing correlation generalizability to phonemic representations

We used orthographic lexicons because they could be easily extracted for a large num-
ber of languages, but orthography is only a proxy for phonetics. Moreover, the Wikipedia
dataset does not attempt to exclude morphologically complex words. Both of these factors
could add unwanted noise to our analyses.

Therefore, we also tested a subset of languages for which we had more carefully con-
structed lexicons with both phonemic and morphological information. Specifically, to
assess whether the correlation between frequency and neighborhood density and between
frequency and phonotactic probability hold in a set of monomorphemic words with
phonemic representations, we performed the same analysis using the four phonemic lexi-
cons from Dutch, English, French, and German.

As stated earlier, we calculated the Pearson correlations for each word length between
token frequency and phonotactic probability (here approximated by phonemic probability

Correlations between phon/ortho. prob. and frequency Correlations between minimal pairs and frequency
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Fig. 4. Comparison of the correlations values obtained for the phonemic lexicons versus orthographic
lexicons of Dutch, English, French, and German. The left panel shows the average correlations between
phonotactic/orthographic probability and frequency for words of length three to seven letters. The right panel
shows the average correlations between minimal pairs and frequency for words of length three to seven
letters.



K. Mahowald et al./Cognitive Science (2018) 13

using an n-gram model operating over triphones) and between token frequency and the
number of minimal pairs. We compared these correlations to those correlations obtained
across 1,000 simulated lexicons following the same methodology as for the wikipedia lex-
icons. As shown in Fig. 3, the Pearson correlations obtained in these four phonemic lexi-
cons replicated previous correlations with the orthographic lexicons for these languages:
All four languages still showed positive correlations for the relationship between phono-
tactic probability and frequency and between the number of minimal pairs and frequency
and these correlations tended to be significantly more positive than the correlations
obtained across our simulated lexicons.

In Fig. 4, we compare the correlations between frequency and the number of minimal
pairs and between frequency and phonotactic probability obtained in the phonemic versus
the orthographic lexicons for Dutch, English, French, and German.

The correlations were slightly lower in the more controlled set for the four languages
than when using the same measures in the larger dataset: the correlation between minimal
pairs and frequencies (across the four languages and word lengths three to seven letters)
is, on average, 0.04 lower for the correlation between minimal pairs and frequency and
0.11 lower for the correlation between orthographic/phonotactic probability and fre-
quency. This suggests that part of the effect could be driven by morphology—which is
absent in the controlled phonemic lexicons but present in the Wikipedia corpus.

4. Discussion

We found that frequent word forms are more likely to be well-formed (phonotactically
or orthographically probable) and similar to other word forms (higher neighborhood den-
sity) than infrequent ones. These correlations were robustly present across a large number
and wide variety of typologically different languages. Just as the Zipfian word frequency
distribution allows for functional optimization of word lengths (Piantadosi, 2014; Pianta-
dosi et al.,, 2011a), this work shows that the frequency profile of words of the same
length is structured in a non-arbitrary way so as to maximize the use of high-probability,
high-neighborhood-density word forms.

Importantly, we do not believe that the main result of this paper is purely a result of
morphological regularity since the same analyses run on monomorphemic words in a sub-
set of languages show the same pattern of results. Moreover, although phonotactic con-
straints are an obvious and major source of regularity in the lexicon, it is important to
note that these results are not likely just the result of phonotactic constraints since the
results hold even after controlling for the influence of orthographic or phonotactic proba-
bility through simulated baselines.

Furthermore, the present results suggests that word form similarity (as measured by
neighborhood density) is a desirable feature for frequent words. This echoes previous
results of ours: In Dautriche et al. (2017), we provided evidence that natural lexicons are
more tightly clustered in phonological space than would be expected by chance, over and
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above the constraints imposed by phonotactics. This, taken together with the present
results, suggests that languages tend to favor word form similarity in the lexicon.

In addition, while poor perceptual distinctiveness among frequently used forms may look
to be disadvantageous during language comprehension, there are reasons to believe that this
may be a simplistic story. Many studies in phonology have shown that recurrent sound pat-
terns in the language result from the repeated interaction of perceptual and articulatory
needs (e.g., Chomsky & Halle, 1968; Hume & Johnson, 2001; Ohala, 1993). For instance,
perception has been shown to be the main explanation for the use of CV syllables patterns
cross-linguistically (Steriade, 1997), the nasal place assimilation (Beddor & Evans-
Romaine, 1992), and vowel reduction (van Bergem, 1995). This as a whole suggests that
there are well-documented influences of perception on phonetics that may interact, in the
long run, with the phonological form of words, pushing them to be more similar.

The present results are in line with information-theoretic accounts of efficient commu-
nication where communicative efficiency is achieved by trading off between ease of pro-
duction and transmission accuracy (Lindblom, 1990; Piantadosi, Tily, & Gibson, 2011b;
Zipf, 1949) and even with accounts that focus only on transmission accuracy (Ferrer-i-
Cancho & Solé, 2003; Pate & Goldwater, 2015) as the same words that are easy to use
by speakers may also be easy to process by listeners (Brown, 1991; Ferreira, 2003),
increasing the chances of successful transmission of a message.

In this study, we addressed the issue of whether the frequency profile of the phonologi-
cal forms of words varies systematically across languages, but we leave it to future work
to investigate how it got to be that way. Indeed, while language usage has been put for-
ward as a powerful explanatory framework to explain the length distribution of words in
the lexicon, it is only recently that experimental studies have shown that such a relation-
ship emerges from pressures for communicative accuracy and efficiency that could be
observed in simple language games in the lab (Kanwal, Smith, Culbertson, & Kirby,
2017). A similar approach could be used to test whether the same language usage pres-
sures shape the phonological profile of words. One plausible mechanism for the effects
described here is that generations of language users improve on the lexicon, honing it over
time by avoiding words that are too strange, complex, or that otherwise do not fit with the
rest of the words in the lexicon (following the experimental work looking at the evolution
of language showing that language users will preferentially discard forms and structures
that are disadvantageous in favor of other, fitter words and phrases; Fedzechkina, Jaeger,
& Newport, 2012; Hills & Adelman, 2015; Smith, Kirby, & Brighton, 2003).
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Notes

1. In order to ensure that any of the observed correlations are not the product of Eng-
lish overlap, we ran the same analyses on the full lexicons as well as on subsets of
lexicons that exclude any word that also appears in the English Subtlex subtitles
database (Brysbaert & New, 2009). This not only excludes English intrusions but
also excludes perfectly good words like die in German (which means “the” and is
unrelated to English “die”’) and French dire (meaning “to say” and unrelated to the
English adjective dire). Note that, for all lengths, the results obtained when exclud-
ing all English words are similar in terms of overall correlation, as can be seen in
Table 5. Because most of the English words excluded are actually not intrusions
but are native words that just happen to also be English forms, we include them in
all subsequent analyses. Note that this method does not account for the possibility
of borrowings in other languages (and indeed many less widely spoken languages
will borrow words from nearby major languages and these borrowings may have
different phonotactics). We consider this phenomenon, however, to be part of the
natural evolution of language and do not attempt to exclude it. In excluding Eng-
lish, we primarily seek to exclude words that appear in Wikipedia due to computer
issues (HTML tags such as <head>, <title>, chunks of English erroneously copied
into the text of other languages, etc.).

2. For each language, we selected our model by its ability to generate candidate
words that are scored to have a high probability in the language considered. Similar
to Dautriche et al. (2017), we compared several n-gram models (with back-off and
Laplace smoothing of 0.01 based on Dautriche et al. [2017]) over letters where n
varied from 1 to 10. Each model was trained on 75% of the lexicon of each lan-
guage (training set), and evaluated on the remaining 25% of the lexicon (testing
set) to determine which model gives the highest sum of log-probability over all
words in the training set. This process was repeated over 50 random splits of the
dataset into training and testing sets. The seven-letter model gave the best results
for 76 of the orthographic lexicons and the nine-phone model for the 20 remaining.
The high degree of the best n-gram model is expected given the word length distri-
bution of our lexicons (highly right skewed toward longer words).

3. We also tried another baseline whereby we simply permuted the real lexicon fre-
quencies of words of the same length and then re-examined the correlations. In the
interest of space, we do not report those results here. But the findings were similar
in that we again found that the real lexicon’s correlations between frequency and
probability and frequency and neighborhood density were significantly greater than
in our simulated baselines.

4. We excluded Gujarati, Telugu, Tamil, Bishnupriya Manipuri, Cantonese, Newar,
Bengali, Japanese, Hindi, Malayalam, Marathi, Burmese, Nepali, Kannada, and
Korean.
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Appendix A: Dataset of 96 lexicons from Wikipedia

We started with lexicons of 115 languages from their Wikipedia databases (https://d
umps.wikimedia.org). We then excluded languages for which a spot-check for non-native
(usually English) words in the top 100 most frequent words in the lexicon between three
and seven characters revealed more than 80% of words were not native. In this way, lan-
guages that used non-alphabetic scripts (like Chinese) were generally excluded since the
three- to seven-letter words in Chinese Wikipedia are often English. After these exclu-
sions, 96 languages remained.* We analyzed the data both with and without these exclu-
sions, and the exclusions do not significantly affect the overall direction or magnitude of
the results. The final languages included 62 Indo-European languages and 34 non-Indo-
European languages. Of the non-Indo-European languages, there are 12 language families
represented.
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To get a sense of how clean these Wikipedia lexicons are, we randomly sampled 10
languages for which we then inspected the 100 most frequent words and an additional
100 random words to look for intrusion of English words, HTML characters, or other
undesirable properties.

For the top 100 words in the lexicons of the 10 sampled languages, we found at most
three erroneous words. For the same languages, we also inspected a randomly selected
100 words and found that the mean number of apparently non-intrusive words was 93.5
(with a range from 85 to 99). The most common intrusion in these languages was English
words.



